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1
GRAPHICS PROCESSING

BACKGROUND

The technology described herein relates to graphics pro-
cessing and in particular to the operation of graphics process-
ing systems that include one or more programmable process-
ing stages (“shaders™).

As is known in the art, graphics processing is typically
carried out in a pipelined fashion, with one or more pipeline
stages operating on the data to generate the final render out-
put, e.g. frame that is displayed. Many graphics processing
pipelines now include one or more programmable processing
stages, commonly referred to as “shaders”, which execute
programs to perform graphics processing operations to gen-
erate the desired graphics data. For example, a graphics pro-
cessing pipeline may include one or more of, and typically all
of, a geometry shader, a vertex shader and a fragment (pixel)
shader. These shaders are programmable processing stages
that execute shader programs on input data values to generate
a desired set of output data (e.g. appropriately transformed
and lit vertex data in the case of a vertex shader) for process-
ing by the rest of the graphics pipeline and/or for output. The
shaders of the graphics processing pipeline may share pro-
grammable processing circuitry, or they may each be distinct
programmable processing units.

As is known in the art, a shader program to be executed by
a given “shader” of a graphics processing pipeline will be
provided by the application that requires the graphics pro-
cessing using a high-level shader programming language,
such as GLSL, HLSL, OpenCL, etc. This shader program will
consist of “expressions” indicating desired programming
steps defined in the relevant language standards (specifica-
tions). The high-level shader program is then translated by a
shader language compiler to binary code for the target graph-
ics processing pipeline. This binary code will consist of
“instructions” which are specified in the instruction set speci-
fication for the given target graphics processing pipeline. The
compilation process for converting the shader language
expressions to binary code instructions may take place via a
number of intermediate representations of the program within
the compiler, as is known in the art. Thus the program written
in the high-level shader language may be translated into a
compiler specific intermediate representation (and there may
be several successive intermediate representations within the
compiler), with the final intermediate representation being
translated into the binary code instructions for the target
graphics processing pipeline.

Thus, references to “expressions” herein, unless the con-
text otherwise requires, refer to shader language construc-
tions that are to be compiled to a target graphics processor
binary code (i.e. are to be expressed in hardware micro-
instructions). (As is known in the art, such shader language
constructions may, depending on the shader language in ques-
tion, be referred to as “expressions”, “statements”, etc. For
convenience, the term “expressions” will be used herein, but
this is intended to encompass all equivalent shader language
constructions such as “statements” in GL.SL.) “Instructions”
correspondingly refer to the actual hardware instructions
(code) that are emitted to perform an “expression”.

When a graphics processing output (e.g. a frame for dis-
play) is required, the graphics processing pipeline will be
provided with a set of “commands” to generate the desired
output. These “commands” are usually in the form of draw
call descriptors which define respective draw calls to be
executed by the graphics processing pipeline. These draw
calls and their descriptors are generated in response to com-
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2

mands from an application running on a host system for
graphics processing. A given draw call may use some or all of
the graphics processing pipeline stages.

The Applicants believe that there remains scope for
improvements to the operation of graphics processing pipe-
lines that include one or more shader stages.

BRIEF DESCRIPTION OF THE DRAWINGS

A number of embodiments of the technology described
herein will now be described by way of example only and
with reference to the accompanying drawings, in which:

FIG. 1 shows an exemplary computer graphics processing
system,

FIG. 2 shows schematically a graphics processing pipeline
that can be operated in the manner of the technology
described herein; and

FIGS. 3 and 4 show schematically embodiments of the
operation of the graphics processing system of FIG. 1.

Like reference numerals are used for like components
where appropriate in the drawings.

DETAILED DESCRIPTION

A first embodiment of the technology described herein
comprises a method of operating a graphics processing sys-
tem which includes a graphics processing pipeline that
includes one or more programmable shading stages which
execute graphics shader programs to perform graphics pro-
cessing operations, the method comprising:

identifying in a shader program to be executed on the
graphics processing pipeline program expressions that
operate on run time constant inputs;

creating a new shader program containing instructions for
executing the identified expressions; and

creating a modified version of the original shader program
in which the instructions for the identified expressions
from the original shader program have been removed
and replaced with load instructions pointing to the out-
put data of the new shader program;

executing the new shader program containing the instruc-
tions for executing the identified expressions on the
graphics processing pipeline so as to generate and store
the output values for those expressions; and

subsequently executing the modified original shader pro-
gram on the graphics processing pipeline, including in
response to the load instructions that have been substi-
tuted into that shader program, loading the stored output
values generated by the new shader program for process-
ing by the modified original shader program.

A second embodiment of the technology described herein

comprises a system for processing graphics comprising:

a graphics processing pipeline that includes one or more
programmable shading stages which execute graphics
shader programs to perform graphics processing opera-
tions; and

a processor configured to:

identify in a shader program to be executed on the graphics
processing pipeline program expressions that operate on
run time constant inputs;

create a new shader program containing instructions for
executing the identified expressions; and

create a modified version of the original shader program in
which the instructions for the identified expressions
from the original shader program have been removed
and replaced with load instructions pointing to the out-
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put data of the new shader program; and further config-
ured to cause the graphics processing pipeline to:

execute the new shader program containing the instruc-
tions for executing the identified expressions on the
graphic processing pipeline so as to generate and store
the output values for those expressions; and

subsequently execute the modified original shader pro-
gram on the graphics processing pipeline, including in
response to the load instructions that have been substi-
tuted into that shader program, loading the stored output
values generated by the new shader program for process-
ing by the modified original shader program.

The technology described herein identifies the presence of
expressions in a shader program to be executed that will
operate on run time (i.e. when the application is being
executed) constant inputs, and then, in effect, extracts those
expressions and executes them in a separate, initial, “pilot”
shader program in advance of the “main” shader program.
This then has the advantage that those expressions (the
instructions emitted for those expressions) may be executed
only once in the initial, pilot shader program, rather than
having to be executed multiple times in the main shader
program each time the result for the expression in question is
required. This can therefore remove repeated redundant cal-
culations from the shading process. Thus, in effect, calcula-
tions in the shader program that are dependent on run time
constant values are run once on the graphics processing pipe-
line as a “pilot” shader, with the main shader program then
being configured to be smaller and to use the results of the
pilot shader.

The Applicants have recognised in this regard that there
may be expressions in a shader program to be executed by a
graphics processing pipeline for which the run time inputs
may be constant, but for which it may not be known what the
input values will actually be until run time (for example
because they may be dependent upon textures being looked
up). Thus itis not possible simply to execute all these expres-
sions in advance, e.g. on the host processor, because the actual
values of the inputs may not be known until run time. The
technology described herein addresses this by creating a
separate “pilot”, shader program of these run time constant
expressions that is executed on the graphics processing pipe-
line in advance of the main shader program.

Executing the “pilot” shader program on the graphics pro-
cessing pipeline ensures that the results and execution of the
program are guaranteed to be exactly the same as if the main
shader program was performed in the normal manner on the
graphics processing pipeline. It also facilitates re-use of the
already existing programmable processing stages (execution
engine) on the graphics processing pipeline, and thus avoids
the need to develop any code necessary to emulate the opera-
tion on the host processor.

The programmable processing stages of the graphics pro-
cessing pipeline can comprise any desired and suitable such
stages. In an embodiment, the graphics processing pipeline
includes one or more, and in an embodiment all of: a geom-
etry shader, a hull shader, a domain shader, a vertex shader
and a fragment (pixel) shader.

The technology described herein can be used in respect of
any desired shader program to be executed by the graphics
processing pipeline. It may be applied in respect of some but
not all of the shader programs to be executed for a given
graphics processing operation (e.g. draw call), but in an
embodiment is performed in respect of all shader programs to
be executed for a given graphics processing operation (e.g.
draw call) (where run time constant expressions exist).
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Thus in an embodiment, the process is repeated for a sec-
ond shader program (and so on, if there are further shader
programs).

The expressions that operate on run time constant inputs
may be any suitable and desired such expressions, such as
expressions that refer to “uniforms” (in a GLSL shader pro-
gram) and samplers having no varying input.

In an embodiment the expressions that operate on run time
constant inputs comprise one or more of, and in an embodi-
ment all of: a global variable that is known to be constant for
a particular draw call; a constant expression as defined in a
shader language specification; a shader language expression
formed by an operator on operands that are all run time
constant expressions; and a shader language construction that
is defined in the language specification as a constant expres-
sion and for which all its operands are run time constants.

The identification of the expressions that operate on run
time constant inputs, and the corresponding creation of the
new “pilot” shader program and the modification of the main
shader program, can be performed as desired.

Thus, for example, the identification of the expressions that
operate on run time constant inputs can identify those expres-
sions in any suitable form in the, e.g., compilation process, for
example as “expressions” in the high level shader language,
or as a corresponding set of instructions in the target code for
the graphics processing pipeline, or as an appropriate set of
“operations” in some intermediate representation of the
shader program. Similarly, the new shader program contain-
ing instructions for executing the identified expressions may
be created in the form of a higher level shader language
program that is then subsequently converted to the necessary
instructions for execution on the graphics processing pipe-
line, or may be created directly as a set of instructions to be
executed on the graphics processing pipeline, or may be cre-
ated in the form of some intermediate representation that is
then converted to the instructions for the graphics processing
pipeline. Thus, the identification of the expressions that oper-
ate on run time constant inputs may be carried out on or using
an intermediate representation of the original shader pro-
gram, and the creation of the corresponding new “pilot”
shader program may equally create that pilot shader program
in the form of an intermediate representation that will then be
translated to binary code “instructions” for the graphics pro-
cessing pipeline.

The identification of the expressions that operate on run
time constant inputs, and the corresponding creation of the
new “pilot” shader program and the modification of the main
shader program, can equally be performed in and by any
suitable stage or component of the graphics processing sys-
tem.

In an embodiment, the compiler for the shader in question
performs this operation. Thus, in an embodiment the shader
compiler for the graphics processing pipeline performs this
operation and/or the respective vertex shader compiler, frag-
ment shader compiler, etc. performs this operation, as appro-
priate (where there are distinct compilers).

As discussed above, a shader program to be executed by a
given programmable stage will normally be provided by the
application that requires the graphics processing using a high-
level shader programming language, such as GLSL, HL.SL,
OpenCL, etc. This shader program is then translated by a
shader language compiler to binary code for the target graph-
ics processing pipeline. Thus in order to implement the tech-
nology described herein, in an embodiment the shader com-
piler identifies run time constant expressions in the shader
program in question, prevents the instructions for executing
those expressions from being emitted into the target graphics
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processing pipeline binary code, creates instead a separate
binary code that contains hardware instructions for the iden-
tified expressions only, together with any necessary metadata
(which together form the “pilot” shader), and then provides
the relevant binary code (and metadata) to the graphics pro-
cessing pipeline for execution.

The metadata should include the information (if any) nec-
essary to execute the “pilot” shader program on the graphics
processing pipeline and to be able later to fetch the result(s) of
the pilot shader program. Thus, the metadata may comprise,
for example, one or more of: the memory layout for the
inputs, the memory layout for the outputs, and/or a descrip-
tion of where the outputs are written. The metadata can be
different for different architectures/implementations.

The extracted run time constant expressions (the instruc-
tions for the extracted run time constant expressions) (the
pilot shader) should be executed on the graphics processing
pipeline so that all those instructions and calculations are
done before the modified main shader program is invoked. In
anembodiment the driver for the graphics processing pipeline
ensures that this is the case. This timing of execution of the
pilot shader means that the dependency on the state of the
sample buffer will have been resolved (by the driver), and so
no additional synchronisation points that slow down deferred
buffer writes will be required.

In an embodiment the created, new shader program (the
extracted shader expressions (the pilot shader)) is executed
after data for the draw call to which the main original shader
program(s) relates has been initialised, but before the corre-
sponding draw call stage (before the actual draw call process-
ing is performed). Thus, in an embodiment, the created, new
“pilot” shader program is executed when all conditions for the
execution of the main (original) shader program(s) have been
met (and before the main shader program(s) is executed). In
an embodiment, the process is organised as follows (in an
embodiment by the run time driver for the graphics process-
ing pipeline): the data required by the draw calls for the
graphics processing output to be generated is initialised, a
dependency chain of necessary processing jobs for the draw
call stages and pilot shaders is created, and then those pro-
cessing jobs are sent to the graphics processing pipeline for
execution.

The output of the pilot shader program can be stored as
desired. The output values should be stored in such a manner
that those values can be loaded and treated as input values by
the modified original main shader program when the substi-
tuted load instructions in that program are executed. Thus, the
output of the pilot shader program is in an embodiment a
memory area storing input values for the follow-up main
shader program. This memory area may be any storage acces-
sible in a shader program via graphics processing pipeline
instructions (such as main memory, stack memory, a tile
buffer, uniform memory, and so on). This memory area may,
e.g., be addressed directly, be remapped as a colour buffer
(render target), or be remapped as the pilot shader’s stack
area. In an embodiment, the output of the pilot shader is
mapped as (written to) a colour buffer (render target), and that
output colour buffer of the pilot shader is then mapped to the
input uniform of the corresponding modified original main
shader program (i.e. the load instructions that are substituted
into the main shader program point to and instruct loads from
an output colour buffer that will be generated by the pilot
shader).

The programmable, shading stages of the graphics pro-
cessing pipeline such as the vertex shader, fragment shader,
etc., can be implemented as desired and in any suitable man-
ner, and can perform any desired and suitable shading, e.g.
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vertex shading, fragment shading, etc., functions, respec-
tively and as appropriate. In the case of a fragment shader, for
example, the fragment shader may render a primitive or
primitives to generate a set of render output values, e.g. rep-
resenting a frame for display. These output values may then
be exported to external memory for storage and use, such as to
a frame buffer for a display.

Each programmable processing stage (shader) may com-
prise any suitable programmable hardware element such as
programmable processing circuitry. Each programmable pro-
cessing stage (shader) may be provided as a separate circuit
element to other programmable stages (shaders) of the pro-
cessing pipeline or the programmable processing stages may
share some or all of their programmable processing circuitry
(that is then differently programmed to serve as the desired
programmable processing stage (shader)).

As well as the programmable processing (shader) stages,
the graphics processing pipeline may also contain any other
suitable and desired processing stages that a graphics pro-
cessing pipeline may contain such as a rasteriser, an early
depth (or an early depth and stencil) tester, a late depth (or
depth and stencil) tester, a blender, a tile buffer, a write out
unit, etc.

The technology described herein can be used for all forms
of output that a graphics processing pipeline may be used to
generate, such as frames for display, render-to-texture out-
puts, etc. The output, e.g. fragment shaded, data values from
the graphics processing are in an embodiment exported to
external, e.g. main, memory, for storage and use, such asto a
frame bufter for a display.

In some embodiments, the graphics processing pipeline
comprises, and/or is in communication with, one or more
memories and/or memory devices that store the data
described herein, and/or store software for performing the
processes described herein. The graphics processing pipeline
may also be in communication with a host microprocessor,
and/or with a display for displaying images based on the data
generated by the graphics processor.

The technology described herein is applicable to any suit-
able form or configuration of graphics processor. It is particu-
larly applicable to tile-based graphics processors and graph-
ics processing systems. Thus in an embodiment, the graphics
processing system and graphics processing pipeline are a
tile-based system and pipeline, respectively.

In an embodiment, the various functions of the technology
described herein are carried out on a single graphics process-
ing platform that generates and outputs the rendered fragment
data that is, e.g., written to the frame buffer for the display
device.

The technology described herein can be implemented in
any suitable system, such as a suitably configured micro-
processor based system. In an embodiment, the technology
described herein is implemented in a computer and/or micro-
processor based system.

The various functions of the technology described herein
can be carried out in any desired and suitable manner. For
example, the functions of the technology described herein can
be implemented in hardware or software, as desired. Thus, for
example, unless otherwise indicated, the various functional
elements and “means” of the technology described herein
may comprise a suitable processor or processors, controller or
controllers, functional units, circuitry, processing logic,
microprocessor arrangements, etc., that are operable to per-
form the various functions, etc., such as appropriately dedi-
cated hardware elements and/or programmable hardware ele-
ments that can be programmed to operate in the desired
manner.
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It should also be noted here that, as will be appreciated by
those skilled in the art, the various functions, etc., of the
technology described herein may be duplicated and/or carried
out in parallel on a given processor. Equally, the various
processing stages may share processing circuitry, etc., if
desired.

Subject to any hardware necessary to carry out the specific
functions discussed above, the graphics processing system
and pipeline can otherwise include any one or more or all of
the usual functional units, etc., that graphics processing pipe-
lines include.

It will also be appreciated by those skilled in the art that all
of the described embodiments of the technology described
herein can, and in embodiments do, include, as appropriate,
any one or more or all of the features described herein.

The methods in accordance with the technology described
herein may be implemented at least partially using software
e.g. computer programs. It will thus be seen that when viewed
from further embodiments the technology described herein
comprises computer software specifically adapted to carry
out the methods herein described when installed on a data
processor, a computer program element comprising computer
software code portions for performing the methods herein
described when the program element is run on a data proces-
sor, and a computer program comprising code adapted to
perform all the steps of a method or of the methods herein
described when the program is run on a data processing
system. The data processor may be a microprocessor system,
a programmable FPGA (field programmable gate array), etc.

The technology described herein also extends to a com-
puter software carrier comprising such software which when
used to operate a graphics processor, renderer or micropro-
cessor system comprising a data processor causes in conjunc-
tion with said data processor said processor, renderer or sys-
tem to carry out the steps of the methods of the technology
described herein. Such a computer software carrier could be
a physical storage medium such as a ROM chip, CD ROM,
RAM, flash memory, or disk, or could be a signal such as an
electronic signal over wires, an optical signal or a radio signal
such as to a satellite or the like.

It will further be appreciated that not all steps of the meth-
ods ofthe technology described herein need be carried out by
computer software and thus from a further broad embodiment
the technology described herein comprises computer soft-
ware and such software installed on a computer software
carrier for carrying out at least one of the steps of the methods
set out herein.

The technology described herein may accordingly suitably
be embodied as a computer program product for use with a
computer system. Such an implementation may comprise a
series of computer readable instructions either fixed on a
tangible, non-transitory medium, such as a computer readable
medium, for example, diskette, CD-ROM, ROM, RAM, flash
memory, or hard disk. It could also comprise a series of
computer readable instructions transmittable to a computer
system, via a modem or other interface device, over either a
tangible medium, including but not limited to optical or ana-
logue communications lines, or intangibly using wireless
techniques, including but not limited to microwave, infrared
or other transmission techniques. The series of computer
readable instructions embodies all or part of the functionality
previously described herein.

Those skilled in the art will appreciate that such computer
readable instructions can be written in a number of program-
ming languages for use with many computer architectures or
operating systems. Further, such instructions may be stored
using any memory technology, present or future, including
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but not limited to, semiconductor, magnetic, or optical, or
transmitted using any communications technology, present or
future, including but not limited to optical, infrared, or micro-
wave. It is contemplated that such a computer program prod-
uct may be distributed as a removable medium with accom-
panying printed or electronic documentation, for example,
shrink-wrapped software, pre-loaded with a computer sys-
tem, for example, on a system ROM or fixed disk, or distrib-
uted from a server or electronic bulletin board over a network,
for example, the Internet or World Wide Web.

An embodiment of the technology described herein will
now be described in the context ofthe processing of computer
graphics for display.

FIG. 1 shows a typical computer graphics processing sys-
tem.

An application 2, such as a game, executing on a host
processor 1 will require graphics processing operations to be
performed by an associated graphics processing unit (graph-
ics processing pipeline) 3. To do this, the application will
generate API (Application Programming Interface) calls that
are interpreted by a driver 4 for the graphics process pipeline
3 that is running on the host processor 1 to generate appro-
priate commands to the graphics processor 3 to generate
graphics output required by the application 2. To facilitate
this, a set of “commands” will be provided to the graphics
processor 3 in response to commands from the application 2
running on the host system 1 for graphics output (e.g. to
generate a frame to be displayed).

As is known in the art, the “commands” to the graphics
processor 3 to generate an output (e.g. to render frames for
display) will be provided to the graphics processing pipeline
3 in the form of draw call descriptors that are generated in
response to commands from the application 2 running on the
host system 1 for graphics processing. In practice there will
be plural draw calls executed, each having a corresponding
draw call descriptor, as is known in the art. Where plural draw
calls are to be executed, each draw call has a descriptor and
the draw call descriptors are stored as a linked list of draw call
descriptors. Each draw call will use some but not necessarily
all (but can use all) of the stages of the graphics processing
pipeline. Each separate draw call may be treated and pro-
cessed in the manner of the present embodiment.

FIG. 2 shows the graphics processing pipeline 3 of the
present embodiment in more detail.

The graphics processing pipeline 3 shown in FIG. 2 is a
tile-based renderer and will thus, as is known in the art,
produce tiles of a render output data array, such as an output
frame to be generated.

(As is known in the art, in tile-based rendering, rather than
the entire render output, e.g., frame, effectively being pro-
cessed in one go as in immediate mode rendering, the render
output, e.g., frame to be displayed, is divided into a plurality
of'smaller sub-regions, usually referred to as “tiles”. Each tile
(sub-region) is rendered separately (typically one-after-an-
other), and the rendered tiles (sub-regions) are then recom-
bined to provide the complete render output, e.g., frame for
display. In such arrangements, the render output is typically
divided into regularly-sized and shaped sub-regions (tiles)
(which are usually, e.g., squares or rectangles), but this is not
essential.)

The render output data array may, as is known in the art,
typically be an output frame intended for display on a display
device, such as a screen or printer, but may also, for example,
comprise intermediate data intended for use in later rendering
passes (also known as a “render to texture” output), etc.

(As is known in the art, when a computer graphics image is
to be displayed, it is usually first defined as a series of primi-
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tives (polygons), which primitives are then divided (raster-
ised) into graphics fragments for graphics rendering in turn.
During a normal graphics rendering operation, the renderer
will modity the (e.g.) colour (red, green and blue, RGB) and
transparency (alpha, a) data associated with each fragment so
that the fragments can be displayed correctly. Once the frag-
ments have fully traversed the renderer, then their associated
data values are stored in memory, ready for output, e.g. for
display.)

FIG. 2 shows the main elements and pipeline stages of the
graphics processing pipeline 3 that are relevant to the opera-
tion of the present embodiment. As will be appreciated by
those skilled in the art there may be other elements of the
graphics processing pipeline that are not illustrated in FIG. 2.
It should also be noted here that FIG. 2 is only schematic, and
that, for example, in practice the shown functional units and
pipeline stages may share significant hardware circuits, even
though they are shown schematically as separate stages in
FIG. 2. It will also be appreciated that each of the stages,
elements and units, etc., of the graphics processing pipeline as
shown in FIG. 2 may be implemented as desired and will
accordingly comprise, e.g., appropriate circuitry and/or pro-
cessing logic, etc., for performing the necessary operation
and functions.

As shown in FIG. 2, the graphics processing pipeline 3
includes a number of stages, including vertex shader 20, a hull
shader 21, a tesselator 22, a domain shader 23, a geometry
shader 24, a rasterisation stage 25, an early Z (depth) and
stencil test stage 26, a renderer in the form of a fragment
shading stage 27, a late Z (depth) and stencil test stage 28, a
blending stage 29, a tile buffer 30 and a downsampling and
writeout (multisample resolve) stage 31.

The vertex shader 20, as is known in the art, takes the input
data values associated with the vertices, etc., defined for the
output to be generated, and processes those data values to
generate a set of corresponding “vertex shaded” output data
values for use by subsequent stages of the graphics processing
pipeline 3. The vertex shading, for example, modifies the
input data to take account of the effect of lighting in the image
to be rendered.

As is known in the art, the hull shader 21 performs opera-
tions on sets of patch control points and generates additional
data known as patch constants, the tessellation stage 22 sub-
divides geometry to create higher-order representations of the
hull, the domain shader 23 performs operations on vertices
output by the tessellation stage (similar to a vertex shader),
and the geometry shader 24 processes entire primitives such
as a triangles, points or lines. These stages together with the
vertex shader 21 effectively perform all the necessary frag-
ment frontend operations, such as transformation and lighting
operations, and primitive setup, to setup the primitives to be
rendered, in response to commands and vertex data provided
to the graphics processing pipeline 3.

The rasterisation stage 25 of the graphics processing pipe-
line 3 operates, as is known in the art, to rasterise the primi-
tives making up the render output (e.g. the image to be dis-
played) into individual graphics fragments for processing. To
do this, the rasteriser 25 receives graphics primitives for ren-
dering, rasterises the primitives to sampling points and gen-
erates graphics fragments having appropriate positions (rep-
resenting appropriate sampling positions) for rendering the
primitives.

The fragments generated by the rasteriser are then sent
onwards to the rest of the pipeline for processing.

The early Z/stencil stage 26 performs, is known in the art,
a Z (depth) test on fragments it receives from the rasteriser 25,
to see if any fragments can be discarded (culled) at this stage.
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To do this, it compares the depth values of (associated with)
fragments issuing from the rasteriser 25 with the depth values
of fragments that have already been rendered (these depth
values are stored in a depth (Z) buffer that is part of the tile
buffer 30) to determine whether the new fragments will be
occluded by fragments that have already been rendered (or
not). At the same time, an early stencil test is carried out.

Fragments that pass the fragment early Z and stencil test
stage 26 are then sent to the fragment shading stage 27. The
fragment shading stage 27 performs the appropriate fragment
processing operations on the fragments that pass the early Z
and stencil tests, so as to process the fragments to generate the
appropriate rendered fragment data, as is known in the art.

This fragment processing may include any suitable and
desired fragment shading processes, such as executing frag-
ment shader programs on the fragments, applying textures to
the fragments, applying fogging or other operations to the
fragments, etc., to generate the appropriate fragment data, as
is known in the art. In the present embodiment, the fragment
shading stage 27 is in the form of a shader pipeline (a pro-
grammable fragment shader).

There is then a “late” fragment Z and stencil test stage 28,
which carries out, inter alia, an end of pipeline depth test on
the shaded fragments to determine whether a rendered frag-
ment will actually be seen in the final image. This depth test
uses the Z-buftfer value for the fragment’s position stored in
the Z-buffer in the tile buffer 30 to determine whether the
fragment data for the new fragments should replace the frag-
ment data of the fragments that have already been rendered,
by, as is known in the art, comparing the depth values of
(associated with) fragments issuing from the fragment shad-
ing stage 27 with the depth values of fragments that have
already been rendered (as stored in the depth buffer). This late
fragment depth and stencil test stage 28 also carries out any
necessary “late” alpha and/or stencil tests on the fragments.

The fragments that pass the late fragment test stage 28 are
then subjected to, if required, any necessary blending opera-
tions with fragments already stored in the tile buffer 30 in the
blender 29. Any other remaining operations necessary on the
fragments, such as dither, etc. (not shown) are also carried out
at this stage.

Finally, the (blended) output fragment data (values) are
written to the tile buffer 30 from where they can, for example,
be output to a frame buffer for display. The depth value for an
output fragment is also written appropriately to a Z-buffer
within the tile buffer 30. (The tile buffer will store, as is
known in the art, colour and depth buffers that store an appro-
priate colour, etc., or Z-value, respectively, for each sampling
point that the buffers represent (in essence for each sampling
point of a tile that is being processed).) These buffers store, as
is known in the art, an array of fragment data that represents
part (a tile) of the overall render output (e.g. image to be
displayed), with respective sets of sample values in the buft-
ers corresponding to respective pixels of the overall render
output (e.g. each 2x2 set of sample values may correspond to
an output pixel, where 4x multisampling is being used).

In the present embodiment, the tile buffer stores its frag-
ment data as 32x32 arrays (i.e. corresponding to a 32x32
array of sample positions in the output to be generated, e.g., in
the image to be displayed). Each 32x32 data position array in
the tile buffer can accordingly correspond to (and will
“natively” support) a 16x16 pixel “tile” of, e.g., the frame to
be displayed, at 4x anti-aliasing (i.e. when taking 4 samples
per pixel).

The tile buffer is provided as part of RAM thatis located on
(local to) the graphics processing pipeline (chip).
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The data from the tile buffer 30 is input to a downsampling
(multisample resolve) write out unit 31, and thence output
(written back) to an external memory output buffer, such as a
frame buffer of a display device (not shown). (The display
device could comprise, e.g., a display comprising an array of
pixels, such as a computer monitor or a printer.)

The downsampling and writeout unit 31 downsamples the
fragment data stored in the tile buffer 30 to the appropriate
resolution for the output buffer (device) (i.e. such that an array
of pixel data corresponding to the pixels of the output device
is generated), to generate output values (pixels) for output to
the output buffer.

Once a tile of the render output has been processed and its
data exported to a main memory (e.g. to a frame buffer in a
main memory (not shown)) for storage, the next tile is then
processed, and so on, until sufficient tiles have been processed
to generate the entire render output (e.g. frame (image) to be
displayed). The process is then repeated for the next render
output (e.g. frame) and so on.

Other arrangements for the graphics processing pipeline 3
would, of course, be possible.

The above describes certain features of the operation of the
graphics processing system shown in FIG. 1. Further features
of the operation of the graphics processing system shown in
FIG. 1 in accordance with embodiments of the technology
described herein will now be described.

As can be seen from FIG. 2, the graphics processing pipe-
line 3 includes a number of programmable processing or
“shader” stages, namely the verbex shader 20, hull shader 21,
domain shader 23, geometry shader 24, and the fragment
shader 27. These programmable shader stages execute
respective shader programs that have one or more input vari-
ables and generate sets of output variables and that are pro-
vided by the application. To do this, the application 2 provides
the shader programs implemented using a high-level shader
programming language, such as GLSL, HLSL,, OpenCL, etc.
These shader programs are then translated by a shader lan-
guage compiler to binary code for the target graphics process-
ing pipeline 3. This may include, as is known in the art, the
creation of one or more intermediate representations of the
program within the compiler. (The compiler may, e.g., be part
of'the driver 4, with there being a special API call to cause the
compiler to run. The compiler execution can thus be seen as
being part of the draw call preparation done by the driver in
response to API calls generated by an application).

Shader programs typically contain constant expressions
(constructions expressed in a shader language that have con-
stant inputs). These constant expressions can be classified
into two types: compile time constant expressions (defined in
language specifications (such as literal values, an arithmetic
operator with constant arguments, etc.)): and run time con-
stant expressions. Run time constant expressions are not
defined anywhere, but can be seen as a global variable that is
known to be constant for a particular draw call (i.e. for all
pipeline stages used within the draw call) and all operations in
a shader program that depend only on the global variable in
question. In the case of run time constant expressions, the
value of the variable is not known by the compiler at compile
time. An example of such a variable is an expression qualified
as “uniform” in a GLSL shader program.

In the present embodiment the expressions that operate on
run time constant inputs comprise: global variables that are
known to be constant for a particular draw call; constant
expressions as defined in a shader language specification;
shader language expressions formed by an operator on oper-
ands that are all run time constant expressions; and shader
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language constructions that are defined in the language speci-
fication as constant expressions and for which all the oper-
ands are run time constants.

The present embodiment operates to identify such run time
constant expressions in shader programs and to extract them
from the main shader program and to instead execute them in
an initial shader program (a “pilot” shader program).

To do this, the shader compiler identifies such run time
constant expressions in a given shader program to be
executed, removes such expressions from the original shader
program (prevents such expressions from being emitted into
the target GPU code), and creates a separate shader program
(binary code) that contains hardware instructions only for the
identified expressions together with metadata for those
expressions to thereby create a “pilot” shader program that
can be executed in advance of the main shader program. The
metadata includes the information necessary to execute the
“pilot” shader program on the graphics processing pipeline
and to be able later to fetch the result(s) of the pilot shader
program. Thus, the metadata may comprise, for example, one
or more of the memory layout for the inputs, the memory
layout for the outputs, and/or a description of where the
outputs are written. The metadata can be different for difter-
ent architectures/implementations.

The compiler also substitutes the original run time constant
expressions in the main shader program with appropriate load
instructions pointing to where the output results from the pilot
shader program will be stored.

This is done for some and in an embodiment all of the
shader programs to be executed for a given desired graphics
processing output.

FIG. 3 illustrates this process. As shown in FIG. 3, the
shader compiler will receive a shader program in a high level
programming language to be compiled (step 40), and first
identify any run time constant expressions in the shader pro-
gram (step 41). It will then remove instructions emitted for
such expressions from the original shader program, and sub-
stitute them in the original main shader program with appro-
priate load instructions pointing to where the output results
from the pilot shader program will be stored (step 42). The
shader compiler then creates a separate shader program (bi-
nary code) that contains hardware instructions only for the
identified run-time constant expressions together with any
necessary metadata for those instructions to thereby create a
“pilot” shader program (step 43) that can be executed in
advance of the main shader program.

In the present embodiment, the compiler configures the
pilot shader programs such that they output to a colour buffer
(render target) in the tile buffer 30. The corresponding load
instructions substituted into the main shader program then
map to this colour buffer so that the main shader program will
use the results of the pilot shader program as its inputs (where
required). Other arrangements for the output of the pilot
shader, such as remapping the pilot shader’s stack area, can be
used, if desired. In general any storage accessible in a shader
program via graphics processing pipeline instructions (such
as main memory, stack memory, a tile buffer, uniform
memory, and so on) can be used for the output of the pilot
shader program.

Once the pilot and main shader programs for execution
have been compiled, the pilot shader program is executed on
the graphics processing pipeline 3 (step 44), followed by the
modified main shader program (step 45). To do this, the driver
4 on the host processor 1 for the graphics processing unit 3
initialises the data required by the draw calls, creates a depen-
dency chain of necessary jobs for the draw call stages and
pilot shaders, and then sends the jobs to the graphics process-
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ing pipeline 3 for execution. The driver ensures that the cre-
ated pilot shader programs are executed after the relevant
draw call’s data has been initialised, but before the corre-
sponding draw call stage is activated (i.e. before the main
shader program is executed). This then ensures that the pilot
shader is executed on the graphics processing unit 3 so that all
its calculations are done before the main shader program is
invoked.

The time dependencies for this operation can be expressed
as follows:

TIME(DCI())<TIME(PS(i,/))<TIME(DCP(,f))

Where

PS=Pilot Shader

DClI=draw call initialisation

DCP=draw call processing (actual rendering)

i=draw call number

j=pipeline stage number

FIG. 4 shows schematically an example of this operation of
the present embodiment. In the arrangement in FIG. 4, it is
assumed that there are four programmable pipeline stages,
51, 52, 53 and 54, and that an application has requested the
processing of two draw calls. It is further assumed that the
first draw call, DrawCalll uses programmable stages 51 and
54, whereas the second draw call, DrawCall2 uses program-
mable stages 51, 52, 53 and 54. This is shown schematically
on FIG. 4.

As shown in FIG. 4, the first step is to initialise the two
draw calls 55, 56. As part of this process respective runtime
constant expressions are identified and stored in respective
tables 57, 58.

In this example, it is assumed that for the first draw call,
DrawCalll, the compiler identifies that the shader program
for the programmable processing stage 54 contains run time
constant expressions. In view of this, the compiler creates a
pilot shader program PS14, 59 to execute these expressions.

Similarly, for the second Draw Call, DrawCall2, it is deter-
mined that the shader programs for the programmable stages
52 and 53 contain run time constant expressions and the
compiler correspondingly creates pilot shaders PS22, 60, and
PS23, 61 to execute these expressions. (In this example, Pilot
Shader 1 and Pilot Shader 2 stand for sets of pilot shaders
associated with DrawCalll or DrawCall2, respectively.)

The compiler also identifies that there are two independent
chains of operations dependent on run time constants in the
first draw call (DrawCalll) shader program for the fourth
programmable processing stage 54.

Once this has been done and the pilot shaders have been
generated, the driver then causes the first pilot shader PS14 to
be executed 59. This pilot shader accordingly reads run time
constant global variables C1, C2, C4 from the table 57 of
input run time constants for the first draw call, DrawCalll,
and writes its results (its output values) into an intermediate
table PS1 Results, 62 (the fact that there were two indepen-
dent chains of operations is shown by the fact that there are
two intermediate results in the table 62).

Next, pilot shaders PS22 and PS23 are executed 60, 61.
These pilot shaders read run time constants C2, C4 (not
necessarily the same as for pilot shader 1) from the table 58 of
input run time constants for the second draw call, DrawCall2,
and write the results of their processing into an intermediate
table PS2 Results 63.

Then, as shown in FIG. 4, the draw calls are executed one
after another, with the relevant pilot shader results stored in
the intermediate tables being used by the appropriate process-
ing stages when executing the draw call processes. Thus the
pilot shader PS14 results 62 are used by the programmable
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processing stage 54 when executing the DrawCalll process
64, and the pilot shader PS22 and pilot shader PS33 results 63
are used by the processing stages 52 and 53 when executing
the second draw call process, 65, 66, as shown in FIG. 4.

This operation will be repeated for each respective draw
call, etc., that is to be processed.

Itcanbe seen from the above, that the technology described
herein, in its embodiments at least, facilitates the removal of
repeated redundant calculations in shader operations of a
graphics processing pipeline. This is achieved, embodiments
of'the technology described herein at least, by identifying and
extracting calculations dependent only on run time constant
values from a shader program and executing those calcula-
tions instead in a pilot shader program that is executed on the
graphics processing pipeline in advance of the main shader
program. The main shader program then uses the results of the
pilot shader program instead of performing the calculations
itself.

The foregoing detailed description has been presented for
the purposes of illustration and description. It is not intended
to be exhaustive or to limit the technology to the precise form
disclosed. Many modifications and variations are possible in
the light of the above teaching. The described embodiments
were chosen in order to best explain the principles of the
technology and its practical application, to thereby enable
others skilled in the art to best utilise the technology in vari-
ous embodiments and with various modifications as are
suited to the particular use contemplated. It is intended that
the scope be defined by the claims appended hereto.

What is claimed is:

1. A method of operating a graphics processing system
which includes a graphics processing pipeline that includes
one or more programmable shading stages which execute
graphics shader programs to perform graphics processing
operations, the method comprising:

identifying in an original shader program to be executed on

the graphics processing pipeline program expressions
that operate on run time constant inputs;

creating a new shader program containing instructions for

executing the identified program expressions;

creating a modified version of the original shader program,

the creating the modified version of the original shader
program including removing the instructions for execut-
ing the identified program expressions from the original
shader program and replacing the instructions for
executing the identified program expressions with load
instructions pointing to output values generated and
stored for the identified program expressions by execut-
ing the new shader program;

executing the new shader program containing the instruc-

tions for executing the identified program expressions
on the graphics processing pipeline, the executing the
new shader program including generating and storing
the output values for the identified program expressions;
and

subsequently executing the modified version of the original

shader program on the graphics processing pipeline, the
subsequently executing the modified version of the
original shader program including, in response to the
load instructions of the modified version of the original
shader program, loading the output values generated and
stored by executing the new shader program for process-
ing by the modified version of the original shader pro-
gram.

2. The method of claim 1 wherein the one or more pro-
grammable shading stages of the graphics processing pipe-
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line comprise one or more of: a geometry shader, a hull
shader, a domain shader, a vertex shader and a fragment
shader.

3. The method of claim 1, further comprising performing
the method for plural original shader programs for a draw call.

4. The method of claim 1, wherein a compiler for a pro-
grammable shading stage of the graphics processing pipeline
performs:

the identifying in the original shader program to be
executed on the graphics processing pipeline program
expressions that operate on run time constant inputs;

the creating the new shader program containing instruc-
tions for executing the identified program expressions;
and

the creating the modified version of the original shader
program, the creating the modified version of the origi-
nal shader program including removing the instructions
for executing the identified program expressions from
the original shader program and replacing the instruc-
tions for executing the identified program expressions
with load instructions pointing to output values gener-
ated and stored for the identified program expressions by
executing the new shader program.

5. The method of claim 1, comprising:

a shader compiler identifying the program expressions in
the original shader program, preventing instructions for
the identified program expressions from being emitted
into the graphics processing pipeline’s binary code, cre-
ating a separate binary code that contains hardware
instructions for the identified program expressions only,
together with metadata for the identified program
expressions, and then providing the separate binary code
to the graphics processing pipeline for execution.

6. The method of claim 1, wherein a driver for the graphics
processing pipeline ensures that the new shader program is
executed before the modified version of the original shader
program.

7. The method of claim 1, wherein the new shader program
is executed after data for a draw call to which the original
shader program relates has been initialised, but before the
actual draw call processing is performed.

8. The method of claim 1, wherein the new shader program
is executed when all conditions for execution of the original
shader program have been met.

9. The method of claim 1, wherein the output values of the
new shader program are written to a colour buffer, and the
load instructions of the modified version of the original
shader program point to that output colour butfer that will be
generated by the new shader program.

10. The method of claim 1, wherein the graphics process-
ing pipeline is a tile-based graphics processing pipeline.

11. A system for processing graphics comprising:

a graphics processing pipeline that includes one or more
programmable shading stages which execute graphics
shader programs to perform graphics processing opera-
tions; and

a processor configured to:

identify in an original shader program to be executed on the
graphics processing pipeline program expressions that
operate on run time constant inputs;

create a new shader program containing instructions for
executing the identified program expressions;

create a modified version of the original shader program,
the creating the modified version of the original shader
program including removing the instructions for execut-
ing the identified program expressions from the original
shader program and replacing the instructions for
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executing the identified program expressions with load
instructions pointing to output values generated and
stored for the identified program expressions by execut-
ing the new shader program;

execute the new shader program containing the instruc-

tions for executing the identified program expressions
on the graphics processing pipeline, the executing the
new shader program including generating and storing
the output values for the identified program expressions;
and

subsequently execute the modified version of the original

shader program on the graphics processing pipeline, the
subsequently executing the modified version of the
original shader program including, in response to the
load instructions of the modified version of the original
shader program, loading the output values generated and
stored by executing the new shader program for process-
ing by the modified version of the original shader pro-
gram.

12. The system of claim 11 wherein the one or more pro-
grammable shading stages of the graphics processing pipe-
line comprise one or more of: a geometry shader, a hull
shader, a domain shader, a vertex shader and a fragment
shader.

13. The system of claim 11, wherein a compiler for a
programmable shading stage of the graphics processing pipe-
line is configured to:

identify in the original shader program to be executed on

the graphics processing pipeline program expressions
that operate on run time constant inputs;
create the new shader program containing instructions for
executing the identified program expressions; and

create the modified version of the original shader program,
the creating the modified version of the original shader
program including removing the instructions for execut-
ing the identified program expressions from the original
shader program and replacing the instructions for
executing the identified program expressions with load
instructions pointing to output values generated and
stored for the identified program expressions by execut-
ing the new shader program.

14. The system of claim 11, wherein a shader compiler is
configured to identify the program expressions in the original
shader program, prevent instructions for the identified pro-
gram expressions from being emitted into the graphics pro-
cessing pipeline’s binary code, create a separate binary code
that contains hardware instructions for the identified program
expressions only, together with metadata for the identified
program expressions, and then provide the separate binary
code to the graphics processing pipeline for execution.

15. The system of claim 11, wherein a driver for the graph-
ics processing pipeline is configured to ensure that the new
shader program is executed before the modified version of the
original shader program.

16. The system of claim 11, wherein the new shader pro-
gram is executed after data for a draw call to which the
original shader program relates has been initialised, but
before the actual draw call processing is performed.

17. The system of claim 11, wherein the new shader pro-
gram is executed when all conditions for the execution of the
original shader program have been met.

18. The system of claim 11, wherein the output values of
the new shader program are written to a colour buffer, and the
load instructions of the modified version of the original
shader program point to that output colour butfer that will be
generated by the new shader program.
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19. The system of claim 11, wherein the graphics process-

ing pipeline is a tile-based graphics processing pipeline.

20. A non-transitory computer readable storage medium

storing computer software code which when executing on a
processor performs a method of operating a graphics process-
ing system which includes a graphics processing pipeline that
includes one or more programmable shading stages which
execute graphics shader programs to perform graphics pro-
cessing operations, the method comprising:

identifying in an original shader program to be executed on 10

the graphics processing pipeline program expressions
that operate on run time constant inputs;

creating a new shader program containing instructions for
executing the identified program expressions;

creating a modified version of the original shader program,
the creating the modified version of the original shader
program including removing the instructions for execut-
ing the identified program expressions from the original
shader program and replacing the instructions for
executing the identified program expressions with load
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instructions pointing to output values generated and
stored for the identified program expressions by execut-
ing the new shader program;

executing the new shader program containing the instruc-
tions for executing the identified program expressions
on the graphics processing pipeline, the executing the
new shader program including generating and storing
the output values for the identified program expressions;
and

subsequently executing the modified version of the original
shader program on the graphics processing pipeline, the
subsequently executing the modified version of the
original shader program including, in response to the
load instructions of the modified version of the original
shader program, loading the output values generated and
stored by executing the new shader program for process-
ing by the modified version of the original shader pro-

gram.



